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Genomic analyses identify molecular
subtypes of pancreatic cancer
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Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that
aggregate into 10 pathways: KRAS, TGF-3, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin
modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic
progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with
histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the
TP63 AN transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor
prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3,
PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation,
exocrine (NR5A2and RBPJL), and endocrine differentiation (NEURODI and NKX2-2). Immunogenic tumours contained
upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences
in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.
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Pancreatic cancer (PC) is the fourth leading cause of cancer death in
Western societies, and projected to be the second within a decade'. It has
amedian survival measured in months and a five-year survival of <5%.
Advances in therapy have only achieved incremental improvements in
overall outcome, but can provide notable benefit for undefined subgroups
of patients. As a consequence, there is an urgent need to better under-
stand the molecular pathology of PC in order to improve patient selection
for current treatment options, and to develop novel therapeutic strategies.

Genomic analyses of pancreatic cancer reveal a complex mutational
landscape with four common oncogenic events in well-known
cancer genes (KRAS, TP53, SMAD4 and CDKN2A), amongst a milieu
of genes mutated at low prevalence. Despite this heterogeneity, onco-
genic point mutations of individual genes aggregate into core molecular
pathways including DNA damage repair, cell cycle regulation, TGF-(3
signalling, chromatin regulation and axonal guidance®=°. Increasingly
sophisticated analyses are revealing biologically important events with
clinical significance, including whole-genome sequencing, which
sub-classifies PC into 4 subtypes based on the frequency and distri-
bution of structural variation. Those termed unstable due to a large
number of structural variants correlate with defects in DNA mainte-
nance and therapeutic responsiveness to platinum based therapies®.
Aberrations in other features that characterize cancer genomes, includ-
ing mutational signatures®, and differential methylation” are providing
deeper insights into disease pathophysiology.

Here we performed a comprehensive integrated genomic analysis
of 456 PCs and their histopathological variants using a combination
of whole-genome and deep-exome sequencing, with gene copy num-
ber analysis to determine the mutational mechanisms and candidate
genomic events important in pancreatic carcinogenesis. RNA expres-
sion profiles were used to define four subtypes and the different tran-
scriptional networks that underpin them. These subtypes are associated
with distinct histopathological characteristics and differential survival.
Genomic and epigenetic features that characterize each subtype infer
different mechanisms of molecular evolution.

Mutational landscape of PC

Study participants were recruited and consent for genomic sequencing
obtained through the Australian Pancreatic Cancer Genome Initiative
(APGI; http://www.pancreaticcancer.net.au) as part of the International
Cancer Genome Consortium (ICGC; http://www.icgc.org). The 382
APGI group consisted of participants with primarily treatment-naive
resected PC, which were pancreatic ductal adenocarcinoma (PDAC)
and its variants (adenosquamous, colloid, PDAC associated with intra-
ductal papillary mucinous neoplasm (IPMN)) and a small number of
rare acinar cell carcinomas (Supplementary Table 1). We detected
23,538 high confidence coding mutations>®?, of which, 7,377 were
verified using orthogonal approaches (Supplementary Tables 1, 2 and
19). A total of 21,208 high confidence genomic rearrangements were
also identified (Supplementary Tables 3 and 4)*%. To maximize the
power to define coding driver mutations, 74 previously published
PC exomes®~ were included to yield a final cohort of 456 tumours.
OncodriverFM detected 32 significantly mutated genes (false discov-
ery rate (FDR) <0.1), 22 of which were also identified by MutsigCV2
(Q<0.1) and/or were supported by HOTNET? analysis (Methods and
Supplementary Table 5). These significantly mutated genes aggregated
into 10 molecular mechanisms (Extended Data Fig. 1): with activating
mutations of KRAS in 92%; disruption of G1/S checkpoint machinery
(TP53, CDKN2A and TP53BP2) in 78%; TGF-[3 signalling (SMAD4,
SMAD3, TGFBRI1, TFGBR2, ACVRIB and ACVR2A) in 47%; histone
modification (KDM6A, SETD2 and ASCOM complex members MLL2
and MLL3) in 24%; the SWI/SNF complex (ARID1A, PBRM]1 and
SMARCA4) in 14%; the BRCA pathway (BRCAI, BRCA2, ATM and
PALB2: 5% germline, 12% somatic); WNT signalling defects through
RNF43 mutation (5%); and RNA processing genes, SF3B1, U2AFI and
RBM10(16%). RBM10is implicated in lung cancer'’, where inactivating
mutations influence expression of oncogenic isoforms of NUMB'.

48 | NATURE | VOL 531 | 3 MARCH 2016

SF3BI1 mutations in PC were aggregated at the K700E mutation hot-
spot common in myelodysplastic syndrome, breast and lung cancer!?
and presents a potential therapeutic target'®. Mutations in other genes
encoding splicing machinery: SF3A1, U2AF2, SF1 and RBM6 were also
identified (Extended Data Fig. 2 and Supplementary Table 6).
GISTIC2 identified 50 regions of recurrent gain (43 focal, 7 chromo-
somal arms) and 73 regions of loss (61 focal, 12 chromosomal arms)
(Supplementary Tables 7-9). These regions included known oncogenes
MET, NOTCH1I and GATA6 and tumour suppressor genes CDKN2A,
SMAD4, TP53, BRCA1, ARIDIA, PBRM1 and SMARCA4. Integrating
copy number and expression data identified a number of genes/ampli-
cons implicated in the progression of other cancer types that exhibited
concordant gene expression changes (Supplementary Table 10). These
included: amplification of MIBI, a known mediator of NOTCH sig-
nalling and pancreas development'* and the CCNEI-URI1 amplicon at
19q12 (Extended Data Fig. 2b). CCNEI is a marker of poor prognosis
in ovarian, breast and lung cancers and is associated with resistance
to platinum based therapy'®. Recent small interfering RNA (siRNA)
screening of PC cell lines provides supportive evidence for CCNE1
amplification as an important mechanism in pancreatic carcinogenesis,
and may represent a therapeutic opportunity using CDK inhibitors!6.
DNA deamination, ectopic APOBEC activity, BRCA-deficiency and
mismatch repair were re-affirmed as the predominant mutational mech-
anisms in PC. Chromothriptic and break-fusion-bridge related genomic
catastrophes were uncommon (12%; Supplementary Table 11). Somatic
LINE-1 retro-transposition of known HotL1 elements was present
in 35% of patients'” (Supplementary Table 12). As only one of these
events directly affected a known cancer gene (insertion into ROBO2),
it appears unlikely that this is a major mutational mechanism in PC.
No recurrent fusion events were detected (Supplementary Table 13).

Transcriptional networks and subtypes of PC

We used bulk tumour tissue to better understand the transcriptional
networks and molecular mechanisms that underpin the tumour
microenvironment. Initial unsupervised clustering of RNA-seq
data for 96 tumours with high epithelial content (>40%) to balance
stromal gene expression resolved four stable classes (Fig. 1a and
Extended Data Fig. 3). These four subtypes were also present in the
extended set of 232 PCs using array-based mRNA expression profiles
encompassing the full range of tumour cellularity (from 12-100%)
(Extended Data Fig. 4). We named these subtypes: (1) squamous;
(2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly dif-
ferentiated endocrine exocrine (ADEX) on the basis of the differential
expression of transcription factors and downstream targets important
in lineage specification and differentiation during pancreas develop-
ment and regeneration. Transcriptional network analysis identified
26 coordinately expressed gene programmes representing distinct
biological processes, 10 of which discriminated the 4 PC classes
(Fig. 1b, Extended Data Fig. 5 and Supplementary Tables 14-16). These
4 subtypes were associated with specific histological characteristics:
(1) squamous with adenosquamous carcinomas (6/25 in squamous
versus 1/71 in the rest, P=0.0011 Fisher’s exact test); (2) pancreatic
progenitor and (3) immunogenic with mucinous non-cystic (colloid)
adenocarcinomas and carcinomas arising from IPMN, which are
mucinous (P=0.0005); and (4) ADEX with rare acinar cell carcinomas
(although numbers were small, both cases clustered with the ADEX
class) (Fig. 1a). Squamous subtype was an independent poor prognostic
factor (Fig. 1c and Supplementary Table 21).

Squamous subtype

Four core gene programmes characterized squamous tumours
(Fig. 1b), which included gene networks involved in inflammation,
hypoxia response, metabolic reprogramming, TGF-f3 signalling,
MYC pathway activation, autophagy and upregulated expression of
TP63AN and its target genes. Many of these genes are highly expressed
in the C2-squamous-like class of tumours of breast, bladder, lung and
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Figure 1 | Molecular classes and transcriptional networks defining
PDAC. a, Unsupervised analysis of RNA-seq identified 4 PDAC classes:
squamous (blue); ADEX (abnormally differentiated endocrine exocrine;
brown); pancreatic progenitor (yellow); and immunogenic (red).

*P < 0.05, Fisher’s exact test. b, Heatmap of gene programmes significantly
enriched in PDAC. Black dot denotes transcriptional networks showing
highest significance for an individual class. ¢, Kaplan-Meier analysis of
patient survival stratified by class.

head and neck cancer defined in the Cancer Genome Atlas (TCGA)
pan-cancer studies'®, which was the reason we termed them squamous
(Fig. 2a). As in these other cancer types, the pancreatic squamous sub-
type was associated with mutations in TP53 (P=0.01) and KDM6A
(P=0.02), which interacts with ASCOM complex constituents MLL2
and MLL3 (Figs 1a and 2b). Although previous immunohistochemical
studies have identified increased TP63 expression in adenosquamous
pancreatic tumours'®, RNA-seq identified high TP63AN expression
and its target genes as a key feature (Fig. 2c). TP63AN, in the presence
of TP53 mutation, is known to regulate epithelial cell plasticity, tum-
origenicity and epithelial to mesenchymal transition in a variety of
solid tumours?’. Squamous tumours were enriched for activated a631
and a6P34 integrin signalling, and activated EGF signalling, (Extended
Data Fig. 6 and Supplementary Table 16). The squamous subtype is
associated with hypermethylation and concordant downregulation of
genes that govern pancreatic endodermal cell-fate determination (for
example, PDX1, MNX1, GATA6, HNF1B) leading to a complete loss of
endodermal identity (Fig. 2d, e and Supplementary Table 17).

Pancreatic progenitor subtype

Transcriptional networks containing transcription factors PDX1I,
MNX1, HNF4G, HNF4A, HNF1B, HNFIA, FOXA2, FOXA3 and HESI
primarily define the pancreatic progenitor class (Extended Data Fig. 7).
These transcription factors are pivotal for pancreatic endoderm cell-fate
determination towards a pancreatic lineage and are linked to maturity
onset diabetes of the young (MODY). PDX1, in particular, is critical
for pancreas development with ductal, exocrine and endocrine cells all
derived from embryonic progenitor cells that express PDX1 (ref. 21).
Gene programmes regulating fatty acid oxidation, steroid hormone
biosynthesis, drug metabolism and O-linked glycosylation of mucins
also define pancreatic progenitor tumours. Importantly, apomucins
MUCS5AC and MUCI, but not MUC2 or MUCE, are preferentially
co-expressed in pancreatic progenitor tumours. The expression of
these apomucins defines the pancreatobiliary subtype of IPMN and
is consistent with PDAC-associated IPMN clustering within this class
(Supplementary Tables 14-16). TGFBR2 inactivating mutations were
also enriched in this subtype (P=0.029).

ADEX subtype

The ADEX class is defined by transcriptional networks that are impor-
tant in later stages of pancreatic development and differentiation, and
is a subclass of pancreatic progenitor tumours. Transcriptional net-
works that characterize both exocrine and endocrine lineages at later
stages are upregulated, rather than one or the other as is the case in
normal pancreas development. The key networks identified include
upregulation of: (i) transcription factors NR5A2, MIST1 (also known as
BHLHA15A) and RBPJL and their downstream targets that are impor-
tant in acinar cell differentiation and pancreatitis/regeneration®>*;
and (ii) genes associated with endocrine differentiation and MODY
(including INS, NEURODI, NKX2-2 and MAFA (Extended Data
Fig. 8 and Supplementary Table 16)). Importantly, several patient-
derived pancreatic cancer cell lines were enriched with gene pro-
grammes associated with the ADEX class. Moreover, these cell lines
expressed multiple genes associated with terminally differentiated
pancreatic tissues, including AMY2B, PRSS1, PRSS3, CEL and INS. In
addition, the methylation pattern of ADEX tumours was distinct from
normal pancreas and clustered with other PCs (Extended Data Fig. 9).

3 MARCH 2016 | VOL 531 | NATURE | 49

© 2016 Macmillan Publishers Limited. All rights reserved



ARTICLE

PN IR
ESANECEN Q ot
a P S A
\)VZ &’;Z@Q,@@ Q/OO?QQV;\ c;z}f:)@'?’ &@V Coverage = 23% (105/456 samples)
vo«voryowoofoec,«foqfoqp SR o%”f KDMGA (39) 1A NRH AR
®» MLL3 (37) | LT TR T
32 o5 P < 0.001 MLL2 (20) JiN n I
ES * B | PPPORSO I i
©
S o —
83 0 * *ﬁ KDM6A @ Sauamous (P = 0.02)
2 é é MLL3 MLL2 Mutation types
E » _05 pppeR3 I Deletion I Non-silent SNV or indel
ISV I Amplification (copy number >8)
¢ d Mvalue €  GATAG  cg14880184
TAp63  TP63AN g3 T .

P-0222 [P-o00709| HNFaA | B f g = 0
5 MNXT - 8 E B N
£ GATAE .« & =
30 % FOxAs & &
= LEgacy
o -5 S100A2 === ==
- EGFR §=at: —

-10 === = :
Al SP A Lox = == ==l 0.2 0.4 0.6 0.8

Figure 2 | Molecular characterization of the squamous class. a, Boxplot
of PDAC squamous class signature scores generated using pan-cancer

12 expression data and stratified by class. b, Mutual exclusivity plot of a
mutated gene sub-network identified by HotNet2. ¢, Boxplot of TAp63 and
TP63 AN expression levels stratified by class. d, Heatmap of differentially

Immunogenic subtype

The immunogenic class shares many of the characteristics of the pan-
creatic progenitor class, but is associated with evidence of a significant
immune infiltrate. Associated immune gene programmes included
B cell signalling pathways, antigen presentation, CD4" T cell, CD8* T
cell and Toll-like receptor signalling pathways (Extended Data Fig. 10
and Supplementary Table 16). Enrichment analysis identified upreg-
ulated expression of genes associated with nine different immune
cell types and/or phenotypes®* (Fig. 3a). The predominant expres-
sion profiles were those related to infiltrating B and T cells, with both

B-values

methylated genes. e, Hypermethylation of GATAG is associated with

the concordant down regulation of GATA6 gene expression. Pearson
correlation and adjusted P values are as indicated. In a and ¢ the boxplots
are annotated by a Kruskall-Wallis P value.

cytotoxic (CD8") and regulatory T cells (CD4"CD25 FOXP3 ™" Tygs).
Upregulation of CTLA4 and PD1 acquired tumour immune suppres-
sion pathways in the immunogenic subtype inferred therapeutic oppor-
tunities with novel immune modulators (Fig. 3¢).

Immune mechanisms in pancreatic cancer

To better define candidate molecular mechanisms active in the tumour
microenvironment, we correlated enrichment of expression patterns
that characterize specific immune cell populations with each gene pro-
gramme (Fig. 3a and Supplementary Tables 15, 16 and 18). Of all gene
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Figure 3 | Immune pathways in PDAC. a, Heatmap showing enrichment
of immune cell/phenotype gene signatures in PDAC (top panel). Heatmap
showing correlation of immune cell/phenotype gene signatures with the
identified PDAC GPs (bottom panel). Numbers in cells represent —log of
correlation significance. b, Boxplot of GP module eigengene (ME) scores
(a measure of sample gene programme relatedness) stratified by class and
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showing GP class associations. ¢, Boxplot of PD1 (also known as PDCDI)
and CTLA4 gene signature scores stratified by class. d, e, Kaplan-Meier
analysis comparing survival of patients having either high or low immune
cell/phenotype signature scores. In b and ¢, the boxplots are annotated by a
Kruskall-Wallis P value.
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Figure 4 | Gain of function TP53 mutations and loss of TAp63

regulate key GPs associated with the squamous class. a, Significant GP
enrichment of genes deregulated in KPC-mouse-derived cell lines treated
with Trp53 specific short hairpin RNAs (shRNAs). b, Trp53 regulated
genes enriched in either GP 2, 3 or 7. ¢, Sub-network of genes differentially
expressed between KRAS Trp53"+ and KRAS Trp53"* Trp63™/ cell lines.

programmes (GP), GP6, GP7 and GP8 were enriched with immune cell
specific gene expression signatures (Fig. 3b). Specifically, GP6 and GP8
were associated with B cell and CD8™ T cell signatures, respectively,
with GP8 associated with the T cell co-inhibitory phenotype (Extended
Data Fig. 10). GP7 was associated with both the macrophage signa-
ture and T-cell co-inhibition, which co-segregated with poor survival
(Fig. 3d, e). Importantly, pathway analysis of GP7, also showed enrich-
ment for antigen processing and presentation, and Toll-like receptor
cascade(s) including high expression of TLR4, TLR7, TLR8, PDCDI1LG2
(PD-L2) and CSFIR. The latter are known mediators of tumour associ-
ated macrophage immunosuppression and inflammation.

TP53 and TP63 modulation of squamous PDAC

Based on the association of TP53 mutation and upregulated TP63
expression in the squamous subtype, we used cell lines derived from
genetically engineered mouse models of pancreatic cancer (Kras®2P/+;
Trp53™"*; TAp63™ KPC mice) to begin to unravel the functional con-
sequences of these events in defining squamous tumours. Mice with
mutations in the DNA binding domain as compared to TP53-null ani-
mals have more aggressive disease with increased metastatic potential,
primarily mediated through platelet-derived growth factor receptor 3
(PDGFRB)?. Analyses of transcriptome data from previous mutant
TP53 knockdown experiments from ref. 25 showed that mutant TP53
regulates the expression of transcriptional networks associated with
the squamous subtype, particularly GPs 2 and 3, including PDGFRB
(Fig. 4a, b; Supplementary Table 20). Kras®'?P'%; Trp53"+*; TAp63'!
mice have more aggressive metastatic pancreatic cancer than their
KrasS12P"#; Trp53+ counterparts and also show deregulation of GPs
2 and 3, inferring that TAp63 plays an important role in squamous PC

T KRAS Trp537+ T KRAS Trp53"+ TAp63™"1

Node colour represents change in gene expression. d, Genes differential
expressed between KRAS Trp53"* and KRAS Trp53"* Trp63" cell lines
significantly enriched in GPs 2 and 3. e, Trp63 regulated genes enriched in
GPs 2 and 3. In a and d, bars are annotated with significance values —log;o
(P value). In b and e, the arrows and colour represent upregulation of gene
expression in the indicated cell types.

(Fig. 4c—e). Transcriptional network analysis identified additional key
factors involved in metastasis that were upregulated in the squamous
subtype for example, LOX?.

Transcriptomic classification of PDAC

We compared our transcriptome classification with those of 2 pre-
viously published studies that had either physically?” or virtually*
micro-dissected tumour epithelium to define PC subtypes (Fig. 1a and
Extended Data Fig. 9). Using their classifiers to subtype our data, 3 of
the classes we defined directly overlap with the Collisson classifica-
tion, with the exception of the novel immunogenic subtype. We altered
Collisson’s nomenclature to better reflect the insights into the molec-
ular pathology and candidate mechanisms that our integrated analysis
generated. The Collisson ‘quasimesenchymal’ subtype was renamed
‘squamous’ to reflect the molecular characteristics of squamous
tumours across multiple tissue types, as defined by the TCGA pan-
cancer analysis. ‘Classical’ was termed ‘pancreatic progenitor’ based
on the prominence of transcriptional networks vital for early pancreas
development, and the predominant discriminator from the squamous
subtype. The Collisson ‘exocrine-like’ also contained transcriptional
networks characteristic of committed endocrine differentiation and as
a consequence were renamed ADEX. Although approximately 50% of
squamous subtype tumours fell within the ‘basal’ subgroup of Moffitt
et al.?8, the remainder were composed of a mixture of other Bailey/
Collisson subtypes.

More sophisticated analyses using larger numbers of tumours
continues to reveal novel insights into pancreatic cancer pathophys-
iology. In particular, integrated analysis of genomic, epigenomic and
transcriptomic characteristics is generating biological insights with
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potential therapeutic relevance. The increased appreciation of the role
of the immune system in cancer development and progression has
led to new classes of therapeutics that specifically target mechanisms
through which the tumour evades immune destruction. Therapeutics
that target some of these mechanisms are currently in clinical trials in
many cancer types, including pancreatic cancer. Early clinical trial data
suggest that, similar to most targeted therapies, patient selection will
also be important for drugs that target the immune system. The novel
immunogenic subtype of pancreatic cancer is characterized by specific
mechanisms that can potentially be targeted using immune modulators,
and testing in clinical trials is encouraged.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Human research ethical approvals. APGI: Sydney South West Area Health
Service Human Research Ethics Committee, western zone (protocol number
2006/54); Sydney Local Health District Human Research Ethics Committee
(X11-0220); Northern Sydney Central Coast Health Harbour Human Research
Ethics Committee (0612-251M); Royal Adelaide Hospital Human Research Ethics
Committee (091107a); Metro South Human Research Ethics Committee (09/
QPAH/220); South Metropolitan Area Health Service Human Research Ethics
Committee (09/324); Southern Adelaide Health Service/Flinders University
Human Research Ethics Committee (167/10); Sydney West Area Health Service
Human Research Ethics Committee (Westmead campus) (HREC2002/3/4.19);
The University of Queensland Medical Research Ethics Committee (2009000745);
Greenslopes Private Hospital Ethics Committee (09/34); North Shore Private
Hospital Ethics Committee. Johns Hopkins Medical Institutions: Johns Hopkins
Medicine Institutional Review Board (NA00026689). ARC-Net, University of
Verona: approval number 1885 from the Integrated University Hospital Trust
(AOUI) Ethics Committee (Comitato Etico Azienda Ospedaliera Universitaria
Integrata) approved in their meeting of 17 November 2010 and documented by the
ethics committee 52070/CE on 22 November 2010 and formalized by the Health
Director of the AOUI on the order of the General Manager with protocol 52438
on 23 November 2010. Ethikkommission an der Technischen Universitit Dresden
(Approval numbers EK30412207 and EK357112012).

Patient material acquisition and extraction. Samples were acquired through the
Australian Pancreatic Cancer Genome Initiative (APGI) as part of the International
Cancer Genome Consortium (ICGC). Informed consent was obtained from all
subjects. Tissue dissection of primary material, RNA and DNA extraction was
performed using previously published methods® Tumour cellularity was esti-
mated for each sample using a combination of qPure analysis of high-density
SNP profiles and KRAS amplicon sequencing?. Primary tumours (n=342) and
41 patient-derived cell lines (representing low cellularity tumours) (Supplementary
Table 1) underwent whole genome sequencing when tumour cellularity was >40%
(mean coverage 75x, n=179), or deep-exome sequencing (mean coverage: 400 x,
n=204) for samples with a cellularity of 12-40%.

Exome library preparation. Exome libraries were generated using the Illumina
Nextera Rapid Capture Exome kit (Illumina, Part no. FC-140-1003) according to
the standard manufacturer’s protocol (part no. 15037436 Rev. A February 2013),
except they were made in an automated high-throughput fashion using Perkin
Elmer’s Sciclone G3 NGS Workstation (Product no. SG3-31020-0300). Then 50 ng
of gDNA was used as input for tagmentation followed by 10 cycles of PCR to
produce sufficient library for exome capture. A total of 500 ng of each library was
pooled as a 12-plex reaction for capture using Illuminas Nextera Exome Oligo
set. Following two rounds of capture, samples were finally subjected to 10 cycles
of PCR to produce exome libraries ready for sequencing. Prior to sequencing,
exome libraries were qualified via either the Perkin Elmer LabChip GX with the
DNA High Sensitivity LabChip kit (Perkin Elmer, Part no. CLS760672), or the
Agilent BioAnalyzer 2100 with the High Sensitivity DNA Kit (Agilent, Part no.
5067-4626). Quantification of libraries for clustering was performed using the
KAPA Library Quantification Kit - Illumina/Universal (KAPA Biosystems, Part
no. KK4824) in combination with the Life Technologies Viia 7 real time PCR
instrument.

Whole-genome library preparation. Whole-genome libraries were generated
using either the Illumina TruSeq DNA LT sample preparation kit (Illumina, Part
no. FC-121-2001 and FC-121-2001) or the Illumina TruSeq DNA PCR-free LT
sample preparation kit (Illumina, Part no. FC-121-3001 and FC-121-3002) accord-
ing to the manufacturer’s protocols with some modifications (Illumina, Part no.
15026486 Rev. C July 2012 and 15036187 Rev. A January 2013 for the two different
kits respectively). For the TruSeq DNA LT sample preparation kit, 11g of gDNA
was used as input for fragmentation to ~300 bp, followed by a SPRI-bead clean up
using the AxyPrep Mag PCR Clean-Up kit (Corning, Part no. MAG-PCR-CL-250).
After end-repair, 3’ adenylation and adaptor ligation, the libraries were size-
selected using a double SPRI-bead method to obtain libraries with an insert size
~300bp. The size-selected libraries were subjected to 8 cycles of PCR to produce
the final whole-genome libraries ready for sequencing. For the TruSeq DNA PCR-
free LT sample preparation kit, 1 1g of gDNA was used as input for fragmentation
to ~350bp, followed by an end-repair step and then a size-selection using the
double SPRI-bead method to obtain libraries with an insert size ~350 bp. The size-
selected libraries then underwent 3’ adenylation and adaptor ligation to produce
final whole genome libraries ready for sequencing. Prior to sequencing, whole-
genome libraries were qualified via the Agilent BioAnalyzer 2100 with the High
Sensitivity DNA Kit (Agilent, Part no. 5067-4626). Quantification of libraries for
clustering was performed using the KAPA Library Quantification Kit - Illumina/
Universal (KAPA Biosystems, Part no. KK4824) in combination with the Life
Technologies Viia 7 real time PCR instrument.
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Total RNA library preparation. RNA-Seq libraries were generated using the
Illumina TruSeq Stranded Total RNA LT sample preparation kit (with Ribo-
Zero Gold) (Illumina, Part no. RS-122-2301 and RS-122-2302), according to
the standard manufacturer’s protocol (Part no. 15031048 Rev. D April 2013),
except they were made in an automated high-throughput fashion using Perkin
Elmer’s Sciclone G3 NGS Workstation (Product no. SG3-31020-0300). The
ribosomal depletion step was performed on 1 g of total RNA using Ribo-Zero
Gold before a heat fragmentation step aimed at producing libraries with an
insert size between 120-200 bp. cDNA was then synthesized from the enriched
and fragmented RNA using SuperScript II Reverse Transcriptase (Invitrogen,
Catalog no. 18064) and random primers. The resulting cDNA was converted
into double-stranded DNA in the presence of dUTP to prevent subsequent
amplification of the second strand and thus maintain the strandedness of
the library. Following 3’ adenylation and adaptor ligation, libraries were sub-
jected to 15 cycles of PCR to produce RNA-seq libraries ready for sequencing.
Prior to sequencing, RNA-seq libraries were qualified via the Perkin Elmer
LabChip GX with the DNA High Sensitivity LabChip kit (Perkin Elmer, Part
no. CLS760672). Quantification of libraries for clustering was performed using
the KAPA Library Quantification Kit - Illumina/Universal (KAPA Biosystems,
Part no. KK4824) in combination with the Life Technologies Viia 7 real time PCR
instrument.

Library sequencing. All libraries were sequenced using the Illumina HiSeq
2000/2500 system with TruSeq SBS Kit v3 - HS (200-cycles) reagents (Illumina,
Part no. FC-401-3001), to generate paired-end 101 bp reads.

Sequence alignment and data management. Sequence data was mapped to the
Genome Reference Consortium GRCh37 assembly using BWA42. All BAM files
have been deposited in the EGA (accession number: EGAS00001000154).

Copy number analysis. Matched tumour and normal patient DNA was assayed
using Illumina SNP BeadChips as per manufacturer’ instructions (Illumina, San
Diego CA) (HumanOmnil-Quad or HumanOmni2.5-8 BeadChips) and analysed
as previously described®®.

Identification and verification of structural variants. The Somatic structural
variant pipeline were identified using the qSV tool. A detailed description of its
use has been recently published*®.

Identification of and verification of point mutations. Substitutions and indels
were called using a consensus calling approach that included gSNP, GATK and
Pindel. The details of call integration and filtering, and verification using orthog-
onal sequencing and matched sample approaches are as previously described®®°.
97% of KRAS mutations identified by KRAS deep-amplicon sequencing were
detected via WGS and WES, inferring a false negative rate of 3% (Supplementary
Table 1).

‘Lollipop’ plots. Plots showing the location and frequency of inactivating muta-
tions were generated using the MutationMapper web tool hosted at http://www.
cbioportal.org/. Available PanCancer mutation data was downloaded from the
Cancer Genomic Data Server (CGDS) hosted by the Computational Biology
Center (cBio) at the Memorial Sloan-Kettering Cancer Center (MSKCC) using
the R package “cgdsr™.

Mutational signatures. Mutational signatures were defined for genome-wide
somatic substitutions, as previously described?.

Significantly mutated gene detection. A combination of three robust approaches
were used to define significantly mutated genes: (i) MutSigCV2 (ref. 30), which
detects genes with point mutations above the background mutation rate;
(ii) OncodriverFM?!, which detects point mutated genes with a bias towards path-
ogenic mutations; and (iii) HOTNET?2 (ref. 32), which identifies sub-networks
based on protein—protein interactions that contain recurrent point mutations,
copy number alterations and structural rearrangements. The HotNet2 (HotNet
diffusion-oriented subnetworks) algorithm was used to identify significantly
mutated subnetworks in a genome-scale interaction network Heat scores for each
protein were calculated as the number of samples having a non-silent SNV, indel,
SV or copy number aberration in the corresponding gene®?. Heat scores were
limited to proteins having a corresponding gene mutation in >2% of samples.
The iRefIndex interaction network was used for the analysis®. Supplementary
Table 20 contains matrices summarizing all mutations, CNVs and SV’ for all
samples used in this study.

RNA sequencing library generation and sequencing. RNA-seq libraries were
generated using TruSeq Stranded Total RNA (part no. 15031048 Rev. D April 2013)
kits, using on a Perkin Elmer’s Sciclone G3 NGS Workstation (product no. SG3-
31020-0300). Ribosomal depletion step was performed on 1 pg of total RNA using
Ribo-Zero Gold before a heat fragmentation step aimed at producing libraries with
an insert size between 120-200 bp. cDNA was then synthesized from the enriched
and fragmented RNA using Invitrogen’s SuperScript II Reverse Transcriptase
(catalogue number 18064) and random primers. The resulting cDNA was fur-
ther converted into double stranded DNA in the presence of dUTP to prevent
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subsequent amplification of the second strand and thus maintain the stranded-
ness of the library. Following 3’ adenylation and adaptor ligation libraries were
subjected to 15 cycles of PCR to produce RNA-seq libraries ready for sequencing.
Prior to sequencing, exome and RNA-seq libraries were qualified and quantified
via Caliper’s LabChip GX (part no. 122000) instrument using the DNA High
Sensitivity Reagent kit (product no. CLS760672). Quantification of libraries for
clustering was performed using the KAPA Library Quantification Kits For Illumina
sequencing platforms (kit code KK4824) in combination with Life Technologies
Viia 7 real time PCR instrument.

RNA-seq analysis. Sequencing reads were mapped to transcripts corresponding to
ensemble 70 annotations using RSEM>**. RSEM data were normalized using TMM
(weighted trimmed mean of M-values) as implemented in the R package ‘edgeR’
For downstream analyses, normalized RSEM data were converted to counts per
million (c.p.m.) and log, transformed™. Genes without at least 1 c.p.m. in 20% of
the sample were excluded from further analysis.

RNA-seq re-analysis of Weismuller et al. RNA sequencing data reported in
ref. 25 was downloaded from the Sequence Read Archive (SRA): Accession num-
ber; SRP033333. The available data was re-analysed using an RNA-seq pipeline
implemented in the bcbio-nextgen project (https://bcbio-nextgen.readthedocs.org/
en/latest/). Briefly, after quality control and adaptor trimming, reads were aligned
to the UCSC mouse mm10 genome build using STAR® Counts for known genes
were generated using the function featureCounts in the R/Bioconductor package
“Rsubread™. The R/Bioconductor package “DESeq2” was used to identify differ-
entially expressed genes®.

KRAS Trp53"* and KRAS Trp53"* Trp63™ mouse derived cell lines. Cell
lines were generated in house from pancreatic tumours harvested from PdxI-Cre,
LSL-KrasG'?P*, Trp53"+ mice or Pdx1-Cre, LSL-Kras®'?"", Trp53/*, TAp63/"!
mice described previously®. Low passage cell lines were used and authenticated
by morphology. Mycoplasma testing confirmed that all cell lines were mycoplasma
negative. Independently derived cell-lines representing either the KRAS Trp53"+
(n=3) or KRAS Trp53"* Trp63"f (n=3) genotype were used for RNA-seq anal-
ysis. RNA-seq libraries were generated using the KAPA stranded RNaseq Kit with
RiboErase (HMR) (KAPA Biosystems; kit ref. KR1151 - v3.15) according to the
manufacturer’s instructions. Briefly, samples were fragmented for 6 min at 94°C
with 10 cycles of library amplification. Library quality control was performed using
an Agilent BioAnalyzer 2100 in combination with a High Sensitivity DNA Kit
(Agilent, Part no. 5067-4626). Samples were evenly pooled to a 2nM concentration
and a 1% PhiX control spike-in was used for sequencing quality control. Libraries
were run on the NextSeq 500 platform according to the manufacturer’s instruc-
tions (Illumina, San Diego CA). Sequenced libraries were mapped to UCSC mouse
mm10 genome build using TopHat and differential gene expression determined
using Cufflinks 2.1.1 and Cuffdiff 2.1.1 as implemented in BaseSpace (https://
basespace.illumina.com/home/indexIllumina, San Diego CA).

Microarray analysis. Tumour RNA was assayed using HumanHT-12 v4
Expression BeadChips as per manufacturer’s instructions (Illumina, San Diego
CA) and analysed as previously described’. Batch correction was performed using
the R package ‘sva™’.

Clustering. Non-negative matrix factorization (NMF) was employed to identify
stable sample clusters*® The top 2,000 most variable genes were used as input.
NMEF parameters: Brunet algorithm; k=1 to k=7 clusters; number of clusterings
to build consensus matrix = 20; error function = Euclidean; and 500 iterations.
The preferred clustering result was determined using the observed cophenetic
correlation between clusters and the average silhouette width of the consensus
membership matrix as determined by the R package ‘cluster. The R package
‘ConsensusClusterPlus'*! was also employed to verify sample clustering. Similar
sample clusters were obtained using both methods (data not shown). The pack-
age ‘ConsensusClusterPlus’ was also used to subtype PC samples according to the
expression signatures defined in Moffitt et al.?

Differential gene expression (DGE). To identify the most representative samples
within each cluster, we computed silhouette widths using the R ‘cluster’ package.
Samples with positive silhouette widths were retained for DGE analysis. DGE
analysis between representative samples was performed using the function ‘voom’
as implemented in the R package ‘edgeR’*2. To define genes differentially expressed
between all classes we used the function ‘sam’ as implemented in the R package
‘siggenes.

Gene sets. Gene sets representing immune cell-type expression markers and
immune meta-genes were obtained from a recent publication?!. Gene sets repre-
senting PDAC classes were generated by selecting significantly upregulated genes
in a given class versus all other classes. An adjusted P value of 0.01 was used as the
cut-off in each case.

Gene set enrichment. Gene set enrichment was performed using the R package
‘GSVA’ (function gsva - arguments: method = “gsva’, mx.diff = TRUE)**. GSVA
implements a non-parametric unsupervised method of gene set enrichment

that allows an assessment of the relative enrichment of a selected pathway across
the sample space. The output of GSVA is a gene-set by sample matrix of GSVA
enrichment scores that are approximately normally distributed. GSVA enrichment
scores were generated for each gene set using the transformed RSEM data unless
otherwise indicated. For survival analyses, sample GSVA enrichment scores were
stratified into quantiles (for example, lower 33% or upper 66% of values).
WGCNA. Weighted gene co-expression network analysis (WGCNA) was used to
generate a transcriptional network from the normalized and transformed RSEM*.
Briefly, WGCNA clusters genes into network modules using a topological overlap
measure (TOM). The TOM is a highly robust measure of network interconnect-
edness and essentially provides a measure of the connection strength between two
adjacent genes and all other genes in a network. Genes are clustered using 1-TOM
as the distance measure and gene modules are defined as branches of the resulting
cluster tree using a dynamic branch-cutting algorithm*.

The module eigengene is used as a measure of module expression in a given
sample and is defined as the first principle component of a module. To relate sam-
ple traits of interest to gene modules, sample traits were correlated to module
eigengenes and significance determined by a Student asymptotic P value for the
given correlations. For gene module survival analyses, module eigengenes were
stratified into quantiles (for example, lower 33% or upper 66% of values). To relate
gene modules to PDAC classes, PDAC class gene set GSVA enrichment scores were
used as sample traits and correlated with the module eigengenes as discussed above.
Similarly, to relate the immune cell-type expression markers and immune meta-
genes to the gene modules each immune GSVA enrichment score was correlated
with the module eigengenes as before.

To determine the enrichment of differentially expressed mouse genes in mod-
ules generated by WGCNA, mouse identifiers were first mapped to their corre-
sponding human HGCN Symbol using the R/Bioconductor package “biomaRt’,
Module gene enrichment was then determined using the function userListEnrich-
ment in the WGCNA package. We considered, as significant, only those modules
showing both significant enrichment and significant gene expression/gene module
correlations.

Pathway analysis. Ontology and pathway enrichment analysis was performed
using the R package ‘dnet™® and/or the Reactome FI Cytoscape plugin 4.1.1
(ref. 47) as indicated. The R package ‘dnet’ was also used to identify significant
sub-networks of differentially expressed genes.

Pan-cancer 12 data and squamous assignment. Platform corrected input data was
obtained from Synapse as part of the Pan-Cancer 12 data freeze (syn1715755)'%.
Pan-cancer 12 subtype assignments were also obtained from Synapse (syn1889916)
and sample sizes, as indicated, used for statistical comparisons. To determine the
relationship between the PDAC classes and the pan-cancer 12 subtypes, PDAC
class gene sets were used in combination with the pan-cancer 12 expression data to
generated GSVA enrichment scores as discussed above. Sample GSVA enrichment
scores representing each PDAC class were then stratified according to the pan-
cancer 12-subtype assignments. A Kruskal-Wallis test was applied to the stratified
scores to determine whether the distributions differed.

Methylation analysis. Sample methylation was determined using Illumina 450K
arrays as previously described” with the following modifications. Probe-level
Illumina GeneStudio output files were imported into R package ‘lumi*® and data
filtered to remove failed hybridizations, probes comprising SNPs and probes
located on sex chromosomes. The filtered methylation values were then colour
balance corrected and normalized using Shift and Scaling Normalization (SSN)
as implemented by lumi. Gene methylation values were obtained by collapsing
probe level values for a given gene loci (that is, probes located 1,500 bp upstream
of the transcriptional start site (TSS) through to the end of transcription) using
the function collapseRows(method = "maxRowVariance”) from the package
WGCNA*, Probes were mapped to gene loci using the R package “genomic-
Features” Differential gene methylation between representative samples (selected
as above under heading Differential gene expression (DGE)) was determined using
the R package ‘limma. M-values were used for differential gene methylation analy-
sis. Concordant changes in methylation and expression were calculated as follows.
Probes were mapped to a given gene using the R package “genomicFeatures”. As
above, probes located 1,500 bp upstream of the TSS through to the end of tran-
scription were considered for each gene. The correlation between a probe 3-value
and the corresponding gene log, (CPM) expression value was then calculated using
Pearson’s correlation coefficient. The statistical significance of each probe/gene
correlation was calculated by permuting the data 10,000 times and comparing
the correlation coefficients obtained before and after permutation. The resulting
P values were adjusted for multiple testing using the approach of Benjamini and
Hochberg.

Concordant copy number expression analysis. Analysis of variance was used
to identify significant changes in gene expression between samples exhibiting
corresponding gene copy number aberrations. Accordingly, gene expression
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values were stratified on the basis of sample copy number change for a given gene.
Deleted genes and genes having copy number >8 were considered for the analysis.
Pvalues were adjusted using the R package ‘qvalue’ for which adjusted values <0.05
were considered statistically significant. Variance was similar between groups
compared. Genes showing copy number aberrations in less than 3% of samples
were excluded from the analysis.

Survival analysis. The date of diagnosis and the date and cause of death were
obtained from the Central Cancer Registry and treating clinicians. Median
survival was estimated using the Kaplan-Meier method and the difference
was tested using the log-rank test. P values of less than 0.05 were considered
statistically significant. Clinicopathologic variables analysed with a P value
<0.25 on log-rank test were entered into Cox proportional hazards multivar-
iate analysis. Statistical analysis was performed using StatView 5.0 Software
(Abacus Systems, Berkeley, CA, USA). Disease-specific survival was used as
the primary endpoint.

Stromal cell and immune infiltrate quantification. To quantify stromal and
immune cell tumour contributions we used the R package ‘estimate’”.

Statistical analysis. A Kruskal-Wallis test was applied to the indicated stratified
scores to determine whether distributions were significantly different. For all
PDAC class comparisons using RNA-seq data, the following sample sizes were
compared: ADEX (n= 14), immunogenic (n = 24); squamous (n = 20); and pan-
creatic progenitor (1 =25). Fisher’s exact tests were used to evaluate the association
between dichotomous variables.

Data. Data presented in this study can be downloaded from the following reposi-
tory https://dcc.icgc.org/repositories under the identifier PACA-AU.
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Extended Data Figure 1 | Mutational landscape of PC. a, Barplot
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representing the somatic mutation rate for each of the 456 samples (that is, genes not significantly mutated but highly connected to mutated
included in this analysis. b, Non-silent mutations (blue), amplifications genes in the network) indicated as coloured diamonds. Different node
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by both MutSigCV and OncodriverFM. d, PC mutation functional
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b, Regions of copy number alteration showing concordant gene expression
changes. For each of the indicated chromosomes, significant GISTIC peaks
are shown at their respective genomic locations (x axis) as grey bars. Each
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blue representing concordant copy number loss and gene downregulation
and red representing concordant copy number amplification (copy
number > 8) and gene upregulation. Significance of concordant copy
number/expression change is measured as a value of —log; (g-value)
times the sign of the direction of change. Dotted lines represent a
significance threshold of —log; (g-value = 0.05) times the sign of the
direction of change. Genes showing concordant copy number/expression
changes and overlapping GISTIC peaks are listed above the plot. Asterisk
denotes known PC oncogenes showing amplification but non-significant
concordant copy number/expression change.
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Extended Data Figure 6 | Core gene programmes (GP) defining the immunogenic (red); and squamous (blue)); (ii) Kaplan-Meier analysis
squamous class. Each panel shows from left to right: (i) a heatmap comparing survival of patients having either high or low gene programme
representing the genes in the specified gene programme most correlated MEs; (iii) pathways significantly enriched in a given GP functional
with the indicated PC class with tumours ranked according to their gene interaction (FI) sub-network defined by the ReactomeFI Cytoscape plugin.
programme module eigengene values (MEs) (PC classes are designated P values represent FDR < 0.05.

by colour as follows: ADEX (brown); pancreatic progenitor (orange);
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Extended Data Figure 7 | Gene programme defining the pancreatic patients having either high or low GP1 MEs; (iii) pathways significantly
progenitor class. a, Panel showing from left to right: (i) a heatmap enriched in a GP1 FI sub-network defined by the ReactomeFI Cytoscape
representing the genes in GP1 most correlated with the pancreatic plugin. P values represent FDR <0.05. b, Network diagram depicting
progenitor class with tumours ranked according to their GP1 module pathways significantly enriched in GP1 (FDR <0.0001). Different node

eigengene values (MEs); (ii) Kaplan-Meier analysis comparing survival of ~ colours indicate different network clusters or closely interconnected genes.
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Extended Data Figure 8 | Gene programmes defining the ADEX class.

a, b, Panel showing from left to right: (i) a heatmap representing the genes
in the specified GP most correlated with the ADEX class with tumours
ranked according to their GP module eigengene values (MEs); (ii) Kaplan—
Meier analysis comparing survival of patients having either high or low GP
MEs; (iii) pathways significantly enriched in a GP FI sub-network defined
by the ReactomeFI Cytoscape plugin. P values represent FDR <0.05.

¢, Network diagram depicting pathways significantly enriched in GP9

(FDR <0.0001). Different node colours indicate different network clusters
or closely interconnected genes. Genes comprising GP9 are indicated as
coloured circles, whereas linker genes (genes not comprising GP9 but
forming multiple connections in the network) are indicated as coloured
diamonds. d, Network diagram depicting pathways significantly enriched
in GP10 (FDR <0.0001). Different node colours indicate different network
clusters or closely interconnected genes.
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Extended Data Figure 9 | Stratification of PC RNASeq data

according to Moffitt et al. a, Heatmap showing the stratification of the
PC cohort of the current study using the tumour subtype classifier
published in Moffitt et al.?®. PCs were classified by consensus clustering
using the top 50 weighted genes associated with the basal-like or classical
subtypes. b, Boxplots showing the distribution of normal and activated
stroma signature scores between the 4 PC classes identified in the current
study. Boxplots are annotated by a Kruskall-Wallis P value. A significant
difference in activated stroma signature scores was observed between
squamous and ADEX tumours P value < 0.01 (¢-test). Boxplot colours
designate class: ADEX (brown); immunogenic (red); squamous (blue);
and pancreatic progenitor (orange). ¢, Plots showing correlation between
tumour cellularity, presented as a QPURE score, and either activated

or normal stroma signature scores. Plots are annotated with Pearson
correlation scores and significance values, with a linear fit represented by a
solid line. Sample ICGC_0338, a rare acinar cell carcinoma is highlighted.
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This sample exhibits near 100% cellularity and has low activated or
normal stroma signature scores. d, Principal component analysis (PCA)
using methylation data. Plot showing pairwise comparisons of samples
distributed along the identified principle components (PC). Adjacent
non-tumorous pancreatic samples represented as green points cluster as
a distinct group relative to ADEX samples (brown and red points). Rare
acinar cell carcinomas (red) cluster with other ADEX samples (brown).
All other PC samples are shown as grey points. e, Plot showing the
correlation of expression of representative genes expressed in acinar

cell carcinoma sample ICGC_0338 compared to the median expression
of the same genes across all other ADEX samples. A red shaded region
encompasses genes showing high median expression in all other ADEX
but low expression in ICGC_0338. A brown shaded region encompasses
genes showing high median expression in all other ADEX and correlatively
high expression in ICGC_0338. Pearson’s correlation and significance are
indicated.
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Extended Data Figure 10 | Gene programmes defining the
immunogenic class. a-c, Each panel shows from left to right: (i) a
heatmap representing the genes in the specified gene programme most
correlated with the indicated PC class with tumours ranked according
to their gene programme module eigengene values (MEs). PC

classes are designated by colour as follows: ADEX (brown); pancreatic
progenitor (orange); immunogenic (red); and squamous (blue);

(ii) Kaplan—Meier analysis comparing survival of patients having either
high or low gene programme MEs; (iii) pathways significantly enriched

P

Pval = 0.0148
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in a given GP functional interaction (FI) sub-network defined by the
ReactomeFI Cytoscape plugin. Corresponding Cytoscape files comprising
GP ReactomeFI subnetworks are provided. d, Boxplot of immune gene
expression stratified by class. Boxplots are annotated by a Kruskall-Wallis
P value and box colours designate class: ADEX (brown); immunogenic
(red); squamous (blue); and pancreatic progenitor (orange). Single letter
designations representing the first letter of each class are provided under
the relevant boxes in each plot.
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